Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.
Hye-Won KangWasiur R KhudaBukhshHeinz KoepplGrzegorz A RempałaPublished in: Bulletin of mathematical biology (2019)
The paper outlines a general approach to deriving quasi-steady-state approximations (QSSAs) of the stochastic reaction networks describing the Michaelis-Menten enzyme kinetics. In particular, it explains how different sets of assumptions about chemical species abundance and reaction rates lead to the standard QSSA, the total QSSA, and the reverse QSSA. These three QSSAs have been widely studied in the literature in deterministic ordinary differential equation settings, and several sets of conditions for their validity have been proposed. With the help of the multiscaling techniques introduced in Ball et al. (Ann Appl Probab 16(4):1925-1961, 2006), Kang and Kurtz (Ann Appl Probab 23(2):529-583, 2013), it is seen that the conditions for deterministic QSSAs largely agree (with some exceptions) with the ones for stochastic QSSAs in the large-volume limits. The paper also illustrates how the stochastic QSSA approach may be extended to more complex stochastic kinetic networks like, for instance, the enzyme-substrate-inhibitor system.