Login / Signup

Proteomic Investigations of Two Pakistani Naja Snake Venoms Species Unravel the Venom Complexity, Posttranslational Modifications, and Presence of Extracellular Vesicles.

Aisha ManuwarBenjamin DreyerAndreas BöhmertAnwar UllahZia MughalAhmed AkremSyed Abid AliHartmut SchlüterChristian Betzel
Published in: Toxins (2020)
Latest advancement of omics technologies allows in-depth characterization of venom compositions. In the present work we present a proteomic study of two snake venoms of the genus Naja i.e., Naja naja (black cobra) and Naja oxiana (brown cobra) of Pakistani origin. The present study has shown that these snake venoms consist of a highly diversified proteome. Furthermore, the data also revealed variation among closely related species. High throughput mass spectrometric analysis of the venom proteome allowed to identify for the N. naja venom 34 protein families and for the N. oxiana 24 protein families. The comparative evaluation of the two venoms showed that N. naja consists of a more complex venom proteome than N. oxiana venom. Analysis also showed N-terminal acetylation (N-ace) of a few proteins in both venoms. To the best of our knowledge, this is the first study revealing this posttranslational modification in snake venom. N-ace can shed light on the mechanism of regulation of venom proteins inside the venom gland. Furthermore, our data showed the presence of other body proteins, e.g., ankyrin repeats, leucine repeats, zinc finger, cobra serum albumin, transferrin, insulin, deoxyribonuclease-2-alpha, and other regulatory proteins in these venoms. Interestingly, our data identified Ras-GTpase type of proteins, which indicate the presence of extracellular vesicles in the venom. The data can support the production of distinct and specific anti-venoms and also allow a better understanding of the envenomation and mechanism of distribution of toxins. Data are available via ProteomeXchange with identifier PXD018726.
Keyphrases
  • electronic health record
  • high throughput
  • big data
  • healthcare
  • transcription factor
  • amino acid
  • weight loss
  • insulin resistance
  • oxide nanoparticles