Docking and Molecular Dynamics Predictions of Pesticide Binding to the Calyx of Bovine β-Lactoglobulin.
Paulina Cortes-HernandezRoberto Vázquez NuñezLenin Domínguez-RamírezPublished in: International journal of molecular sciences (2020)
Pesticides are used extensively in agriculture, and their residues in food must be monitored to prevent toxicity. The most abundant protein in cow's milk, β-lactoglobulin (BLG), shows high affinity for diverse hydrophobic ligands in its central binding pocket, called the calyx. Several of the most frequently used pesticides are hydrophobic. To predict if BLG may be an unintended carrier for pesticides, we tested its ability to bind 555 pesticides and their isomers, for a total of 889 compounds, in a rigid docking screen. We focused on the analysis of 60 unique molecules belonging to the five pesticide classes defined by the World Health Organization, that docked into BLG's calyx with ΔGs ranging from -8.2 to -12 kcal mol-1, chosen by statistical criteria. These "potential ligands" were further analyzed using molecular dynamic simulations, and the binding energies were explored with Molecular Mechanics/Generalized Born/Surface Area (MMGBSA). Hydrophobic pyrethroid insecticides, like cypermethrin, were found to bind as deeply and tightly into the calyx as BLG's natural ligand, palmitate; while polar compounds, like paraquat, were expelled. Our results suggest that BLG could be a carrier for pesticides, in particular for pyrethroid insecticides, allowing for their accumulation in cow's milk beyond their solubility restrictions. This analysis opens possibilities for pesticide biosensor design based on BLG.
Keyphrases
- molecular dynamics
- risk assessment
- human health
- density functional theory
- gas chromatography
- aedes aegypti
- ionic liquid
- protein protein
- climate change
- molecular dynamics simulations
- zika virus
- aqueous solution
- oxidative stress
- small molecule
- gestational age
- preterm infants
- low birth weight
- high resolution
- single cell
- pulmonary fibrosis