Fluoride Geochemistry and Exposure Risk Through Groundwater Sources in Northeastern Parts of Rajasthan, India.
Tirumalesh KeesariDiksha PantAnnadasankar RoyUday Kumar SinhaAjay JaryalManveer SinghS K JainPublished in: Archives of environmental contamination and toxicology (2021)
Exposure to fluoride concentrations above a threshold of 1.5 mg/L can cause joint pains, restricted mobility, skeletal and dental fluorosis. This study aims to determine the hydrochemical evolution of the fluoride-rich groundwater and estimate the risk of fluoride exposure to the residents of semi-arid northeastern part of Rajasthan, India. The methodology involves measurement of fluoride and other ionic concentrations in groundwater using ion chromatography, followed by an estimation of the cumulative density function and fluorosis risk. The fluoride concentration in water samples varied from 0.04 to 8.2 mg/L with 85% samples falling above the permissible limit. The empirical cumulative density function was used to estimate the percentage and degree of health risks associated with the consumption of F- contaminated water. It is found that 55% of the samples indicate risk of dental fluorosis, 42% indicate risk of deformities to knee and hip bones, and 18% indicate risk of crippling fluorosis. In addition, instances of high nitrate concentrations above the permissible limit of 45 mg/L are also found in 13% of samples. The fluoride rich groundwater is mainly associated with the Na-HCO3-Cl type water facies while low fluoride groundwater shows varied chemical facies. The saturation index values indicate a high probability of a further increase in F- concentration in groundwater of this region. The calculated fluoride exposure risk for the general public in the study area is 3-6 times higher than the allowed limit of 0.05 mg/kg/day. Based on the results of this study, a fluorosis index map was prepared for the study area. The northern and northeastern parts are less prone to fluorosis, whereas the south-central and southwestern parts are highly vulnerable to fluorosis. The inferences from this study help to prioritize the regions that need immediate attention for remediation.