Carbon Nanotube Color Centers in Plasmonic Nanocavities: A Path to Photon Indistinguishability at Telecom Bands.
Yue LuoXiaowei HeYounghee KimJeffrey L BlackburnStephen K DoornHan HtoonStefan StraufPublished in: Nano letters (2019)
Indistinguishable single photon generation at telecom wavelengths from solid-state quantum emitters remains a significant challenge to scalable quantum information processing. Here we demonstrate efficient generation of "indistinguishable" single photons directly in the telecom O-band from aryl-functionalized carbon nanotubes by overcoming the emitter quantum decoherence with plasmonic nanocavities. With an unprecedented single-photon spontaneous emission time down to 10 ps (from initially 0.7 ns) generated in the coupling scheme, we show a two-photon interference visibility at 4 K reaching up to 0.79, even without applying post selection. Cavity-enhanced quantum yields up to 74% and Purcell factors up to 415 are achieved with single-photon purities up to 99%. Our results establish the capability to fabricate fiber-based photonic devices for quantum information technology with coherent properties that can enable quantum logic.