Login / Signup

Ab Initio Kinetics of Methylamine Radical Thermal Decomposition and H-Abstraction from Monomethylhydrazine by H-Atom.

Hongyan SunGhanshyam L VaghjianiChung K Law
Published in: The journal of physical chemistry. A (2020)
Methylamine radicals (CH3NH) and amino radicals (NH2) are major products in the early pyrolysis/ignition of monomethylhydrazine (CH3NHNH2). Ab initio kinetics of thermal decomposition of CH3NH radicals was analyzed by RRKM master equation simulations. It was found that β-scission of the methyl H-atom from CH3NH radicals is predominant and fast enough to induce subsequent H-abstraction reactions in CH3NHNH2 to trigger ignition. Consequently, the kinetics of H-abstraction reactions from CH3NHNH2 by H-atoms was further investigated. It was found that the energy barriers for abstraction of the central amine H-atom, two terminal amine H-atoms, and methyl H-atoms are 4.16, 2.95, 5.98, and 8.50 kcal mol-1, respectively. In units of cm3 molecule-1 s-1, the corresponding rate coefficients were found to be k8 = 9.63 × 10-20T2.596 exp(-154.2/T), k9 = 2.04 × 10-18T2.154 exp(104.1/T), k10 = 1.13 × 10-20T2.866 exp(-416.3/T), and k11 = 2.41 × 10-23T3.650 exp(-870.5/T), respectively, in the 290-2500 K temperature range. The results reveal that abstraction of the terminal amine H-atom to form trans-CH3NHNH radicals is the dominant channel among the different abstraction channels. At 298 K, the total theoretical H-abstraction rate coefficient, calculated with no adjustable parameters, is 8.16 × 10-13 cm3 molecule-1 s-1, which is in excellent agreement with Vaghjiani's experimental observation of (7.60 ± 1.14) × 10-13 cm3 molecule-1 s-1 ( J. Phys. Chem. A 1997, 101, 4167-4171, DOI: 10.1021/jp964044z).
Keyphrases
  • room temperature
  • molecular dynamics
  • ionic liquid
  • magnetic resonance imaging
  • electron transfer
  • dna methylation
  • mass spectrometry
  • risk assessment
  • perovskite solar cells