Login / Signup

Multiparticle Simulations of Quadrupolar Ion Detection in an Ion Cyclotron Resonance Cell with Four Narrow Aperture Detection Electrodes.

Joshua A DriverKonstantin O NagornovAnton N KozhinovYury O TsybinAndriy KharchenkoI Jonathan Amster
Published in: Journal of the American Society for Mass Spectrometry (2017)
The current paradigm in FT-ICR cell design is to approximate the ideal three-dimensional quadratic trapping potential as closely as possible to maintain ion cloud spatial coherence and achieve long transients, either with hyperbolically shaped electrodes, shimming electrodes, or by dynamic harmonization. In sharp contrast, the FT-ICR analyzer cell with four narrow aperture detection electrodes (NADEL) introduces significant anharmonic terms to the trapping potential. This analyzer cell is capable of quadrupolar detection by which one can measure a signal that is close to the unperturbed cyclotron frequency. This is far less sensitive to trapping potential and space charge shifts than the reduced cyclotron frequency measured in conventional ICR cells. The quadrupolar mode of ion detection in NADEL cells has been examined previously by SIMION simulations of ion clouds with up to 500 ions per simulation. Here, the behavior of the NADEL analyzer cell is examined through particle-in-cell (PIC) simulations, which allows us to examine the behavior of large populations (tens of thousands) of ions with space charge considerations, and to calculate the induced charge on the NADEL detection electrodes, and thus the transient signal. PIC simulations confirm a unique spatial distribution of the ions, with a coherent motion that results in long transient signals. Dependence of the ion cloud and image current signal on cell design, ion energy, and magnetron radius are examined. Coalescence effects are compared with those found in a dynamically harmonized cell. The insensitivity of the measured cyclotron frequency to space-charge is demonstrated both with simulations and experimentally. Graphical Abstract ᅟ.
Keyphrases