Characterization of Chitosan Hydrogels Obtained through Phenol and Tripolyphosphate Anionic Crosslinking.
Mitsuyuki HidakaMasaru KojimaShinji SakaiDelattre CedricPublished in: Polymers (2024)
Chitosan is a deacetylated polymer of chitin that is extracted mainly from the exoskeleton of crustaceans and is the second-most abundant polymer in nature. Chitosan hydrogels are preferred for a variety of applications in bio-related fields due to their functional properties, such as antimicrobial activity and wound healing effects; however, the existing hydrogelation methods require toxic reagents and exhibit slow gelation times, which limit their application in biological fields. Therefore, a mild and rapid gelation method is necessary. We previously demonstrated that the visible light-induced gelation of chitosan obtained through phenol crosslinking (ChPh) is a rapid gelation method. To further advance this method (<10 s), we propose a dual-crosslinked chitosan hydrogel obtained by crosslinking phenol groups and crosslinking sodium tripolyphosphate (TPP) and the amino groups of chitosan. The chitosan hydrogel was prepared by immersing the ChPh hydrogel in a TPP solution after phenol crosslinking via exposure to visible light. The physicochemical properties of the dual-crosslinked hydrogels, including Young's moduli and water retentions, were subsequently investigated. Young's moduli of the dual-crosslinked hydrogels were 20 times higher than those of the hydrogels without TPP ion crosslinking. The stiffness could be manipulated by varying the immersion time, and the water retention properties of the ChPh hydrogel were improved by TPP crosslinking. Ion crosslinking could be reversed using an iron chloride solution. This method facilitates chitosan hydrogel use for various applications, particularly tissue engineering and drug delivery.