Clindamycin-loaded titanium prevents implant-related infection through blocking biofilm formation.
Youbin LiShaochuan WangShidan LiJun FeiPublished in: Journal of biomaterials applications (2021)
Implant-related infection is a disastrous complication. Surface modification of titanium is considered as an important strategy to prevent implant-related infection. However, there is no recognized surface modification strategy that can be applied in clinic so far. We explored a new strategy of coating. The clindamycin-loaded titanium was constructed by layer-by-layer self-assembly. The release of clindamycin from titanium was detected through high performance liquid chromatography. Different titanium was co-cultured with Staphylococcus aureus for 24 h in vitro, then the effect of different titanium on bacterial colonization and biofilm formation was determined by spread plate method and scanning electron microscopy. Cytotoxicity and cytocompatibility of clindamycin-loaded titanium on MC3T3-E1 cells were measured by CCK8. The antibacterial ability of clindamycin-loaded titanium in vivo was also evaluated using a rat model of osteomyelitis. The number of osteoclasts in bone defect was observed by tartrate-resistant acid phosphatase staining. Bacterial burden of surrounding tissues around the site of infection was calculated by tissue homogenate and colony count. Clindamycin-loaded titanium could release clindamycin slowly within 160 h. It reduced bacterial colonization by three orders of magnitude compare to control (p < .05) and inhibits biofilm formation in vitro. Cells proliferation and adhesion were similar on three titanium surfaces (p > .05). In vivo, clindamycin-loaded titanium improved bone healing, reduced microbial burden, and decreased the number of osteoclasts compared control titanium in the rat model of osteomyelitis. This study demonstrated that clindamycin-loaded titanium exhibited good biocompatibility, and showed antibacterial activity both in vivo and in vitro. It is promising and might have potential for clinical application.
Keyphrases
- biofilm formation
- staphylococcus aureus
- drug delivery
- pseudomonas aeruginosa
- candida albicans
- wound healing
- high performance liquid chromatography
- soft tissue
- primary care
- gene expression
- high resolution
- endothelial cells
- wastewater treatment
- cell cycle arrest
- climate change
- bone mineral density
- postmenopausal women
- cell proliferation
- mouse model
- endoplasmic reticulum stress