Login / Signup

Supramolecular structures of NiII and CuII with the sterically demanding Schiff base dyes driven by cooperative action of preagostic and other non-covalent interactions.

Alexey A ShiryaevTatyana M BurkhanovaMariusz Paweł MitorajMercedes KukułkaFilip SaganGhodrat MahmoudiMaria G BabashkinaMichael BolteDamir A Safin
Published in: IUCrJ (2021)
This work reports on synthesis and extensive experimental and theoretical investigations on photophysical, structural and thermal properties of the NiII and CuII discrete mononuclear homoleptic complexes [Ni(L I,II)2] and [Cu(L I,II)2] fabricated from the Schiff base dyes o-HOC6H4-CH=N-cyclo-C6H11 (HL I) and o-HOC10H6-CH=N-cyclo-C6H11 (HL II), containing the sterically crowding cyclo-hexyl units. The six-membered metallocycles adopt a clearly defined envelope conformation in [Ni(L II)2], while they are much more planar in the structures of [Ni(L I)2] and [Cu(L I,II)2]. It has been demonstrated by in-depth bonding analyses based on the ETS-NOCV and Interacting Quantum Atoms energy-decomposition schemes that application of the bulky substituents, containing several C-H groups, has led to the formation of a set of classical and unintuitive intra- and inter-molecular interactions. All together they are responsible for the high stability of [Ni(L I,II)2] and [Cu(L I,II)2]. More specifically, London dispersion dominated intramolecular C-H⋯O, C-H⋯N and C-H⋯H-C hydrogen bonds are recognized and, importantly, the attractive, chiefly the Coulomb driven, preagostic (not repulsive anagostic) C-H⋯Ni/Cu interactions have been discovered despite their relatively long distances (∼2.8-3.1 Å). All the complexes are further stabilized by the extremely efficient intermolecular C-H⋯π(benzene) and C-H⋯π(chelate) interactions, where both the charge-delocalization and London dispersion constituents appear to be crucial for the crystal packing of the obtained complexes. All the complexes were found to be photoluminescent in CH2Cl2, with [Cu(L II)2] exhibiting the most pronounced emission - the time-dependent density-functional-theory computations revealed that it is mostly caused by metal-to-ligand charge-transfer transitions.
Keyphrases
  • metal organic framework
  • density functional theory
  • molecular dynamics
  • single cell
  • molecular dynamics simulations
  • transition metal
  • transcription factor
  • quantum dots
  • water soluble
  • solar cells