Login / Signup

Surface-Modified Carbon Nanotubes with Ultrathin Co 3 O 4 Layer for Enhanced Oxygen Evolution Reaction.

Kangpyo LeeSukhyun KangJeong Ho RyuHayun JeonMinju KimYoung-Kwang KimTaeseup SongHyukSu HanSungwook MhinKang Min Kim
Published in: ACS applied materials & interfaces (2023)
Alkaline water electrolysis is a vital technology for sustainable and efficient hydrogen production. However, the oxygen evolution reaction (OER) at the anode suffers from sluggish kinetics, requiring overpotential. Precious metal-based electrocatalysts are commonly used but face limitations in cost and availability. Carbon nanostructures, such as carbon nanotubes (CNTs), offer promising alternatives due to their abundant active sites and efficient charge-transfer properties. Surface modification of CNTs through techniques such as pulsed laser ablation in liquid media (PLAL) can enhance their catalytic performance. In this study, we investigate the role of surface-modified carbon (SMC) as a support to increase the active sites of transition metal-based electrocatalysts and its impact on electrocatalytic performance for the OER. We focus on Co 3 O 4 @SMC heterostructures, where an ultrathin layer of Co 3 O 4 is deposited onto SMCs using a combination of PLAL and atomic layer deposition. A comparative analysis with aggregated Co 3 O 4 and Co 3 O 4 @pristine CNTs reveals the superior OER performance of Co 3 O 4 @SMC. The optimized Co 3 O 4 @SMC exhibits a 25.6% reduction in overpotential, a lower Tafel slope, and a significantly higher turnover frequency (TOF) in alkaline water splitting. The experimental results, combined with density functional theory (DFT) calculations, indicate that these improvements can be attributed to the high electrocatalytic activity of Co 3 O 4 as active sites achieved through the homogeneous distribution on SMCs. The experimental methodology, morphology, composition, and their correlation with activity and stability of Co 3 O 4 @SMC for the OER in alkaline media are discussed in detail. This study contributes to the understanding of SMC-based heterostructures and their potential for enhancing electrocatalytic performance in alkaline water electrolysis.
Keyphrases