Login / Signup

Nanocomposite structure of two-line ferrihydrite powder from total scattering.

Nicholas P FunnellMaxwell F FulfordSayako InouéKarel KletetschkaF Marc MichelAndrew L Goodwin
Published in: Communications chemistry (2020)
Ferrihydrite is one of the most important iron-containing minerals on Earth. Yet determination of its atomic-scale structure has been frustrated by its intrinsically poor crystallinity. The key difficulty is that physically-different models can appear consistent with the same experimental data. Using X-ray total scattering and a nancomposite reverse Monte Carlo approach, we evaluate the two principal contending models-one a multi-phase system without tetrahedral iron(III), and the other a single phase with tetrahedral iron(III). Our methodology is unique in considering explicitly the complex nanocomposite structure the material adopts: namely, crystalline domains embedded in a poorly-ordered matrix. The multi-phase model requires unphysical structural rearrangements to fit the data, whereas the single-phase model accounts for the data straightforwardly. Hence the latter provides the more accurate description of the short- and intermediate-range order of ferrihydrite. We discuss how this approach might allow experiment-driven (in)validation of complex models for important nanostructured phases beyond ferrihydrite.
Keyphrases
  • monte carlo
  • big data
  • high resolution
  • quantum dots
  • data analysis
  • computed tomography
  • machine learning
  • artificial intelligence