Login / Signup

Missing-Linker-Assisted Artesunate Delivery by Metal-Organic Frameworks for Synergistic Cancer Treatment.

Dongdong WangIsabel Wenjia HeJiawei LiuDeblin JanaYinglong WuXiaodong ZhangCheng QianYi GuoXiaokai ChenAnivind Kaur BindraRongjun Zhao
Published in: Angewandte Chemie (International ed. in English) (2021)
Clinical translation of artesunate (ATS) as a potent antitumor drug has been obstructed by its rapid degradation and low bioavailability. Herein, we report the development of an ATS nanomedicine through the self-assembly with Mn[Co(CN)6 ]2/3 □1/3 metal-organic frameworks (MOFs) that have hidden missing linkers. The defects in MOFs originating from the missing linkers play a key role in increasing the biological stability and tumor accumulation of ATS. Chlorin e6 (Ce6) and ATS can be co-loaded into MOFs for a synergistic antitumor efficacy. In the presence of intracellular HCO3 - , Mn2+ acts as an efficient catalyst to promote the bicarbonate-activated H2 O2 system which oxidizes ATS to generate reactive oxygen species and induce oxidative death to cancer cells. The released [CoIII (CN)6 ] linker undergoes a redox reaction with intracellular glutathione to prevent the scavenging ability of reactive oxygen species, contributing to synergistic chemodynamic therapy of ATS and photodynamic therapy of Ce6. Thus, defect-engineered MOFs with hidden missing linkers hold great promise in advancing the practical use of ATS as an antitumor medicine.
Keyphrases