Selecting an Optimal Faraday Cage To Minimize Noise in Electrochemical Experiments.
Matthew W GlasscottEric W BrownKeirstin DorseyCharles H LaberKeith ConleyJason D RayLee C MooresAnton NetchaevPublished in: Analytical chemistry (2022)
The ubiquitous Faraday cage, an experimental component particularly essential for nanoelectrochemical measurements, is responsible for neutralizing noise introduced by electromagnetic interference (EMI). Faraday cage designs abound in the literature, often exhibiting varying thicknesses, mesh sizes, and base materials. The fact that the Faraday cage composition most often goes unreported underscores the fact that many electrochemical researchers assume a 100% EMI reduction for any given design. In this work, this assumption is challenged from a theoretical and empirical perspective by highlighting the physical principles producing the Faraday effect. A brief history of the Faraday cage and a simplified theoretical approach introduce fundamental considerations regarding optimal design properties. In practice, time-domain noise profiles and corresponding Fourier transform frequency domain information for custom-built Faraday cages reveal that maximally conductive cages provide more optimal EMI exclusion.
Keyphrases