Login / Signup

Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization.

Seo-Hyun ChoiA-Ram KimJae-Kyung NamJin-Mo KimJee-Youn KimHaeng Ran SeoHae-June LeeJaeho ChoYoon-Jin Lee
Published in: Nature communications (2018)
It remains controversial whether targeting tumour vasculature can improve radiotherapeutic efficacy. We report that radiation-induced endothelial-to-mesenchymal transition (EndMT) leads to tumour vasculature with abnormal SMA+NG2+ pericyte recruitment during tumour regrowth after radiotherapy. Trp53 (but not Tgfbr2) deletion in endothelial cells (ECs) inhibited radiation-induced EndMT, reducing tumour regrowth and metastases with a high CD44v6+ cancer-stem-cell (CSC) content after radiotherapy. Osteopontin, an EndMT-related angiocrine factor suppressed by EC-Trp53 deletion, stimulated proliferation in dormant CD44v6+ cells in severely hypoxic regions after radiation. Radiation-induced EndMT significantly regulated tumour-associated macrophage (TAM) polarization. CXCR4 upregulation in radioresistant tumour ECs was highly associated with SDF-1+ TAM recruitment and M2 polarization of TAMs, which was suppressed by Trp53 deletion. These EndMT-related phenomena were also observed in irradiated human lung cancer tissues. Our findings suggest that targeting tumour EndMT might enhance radiotherapy efficacy by inhibiting the re-activation of dormant hypoxic CSCs and promoting anti-tumour immune responses.
Keyphrases