Login / Signup

Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin.

Saurabh GangolaAnita SharmaPankaj BhattPriyanka KhatiParul Chaudhary
Published in: Scientific reports (2018)
Ubiquitous presence of cypermethrin as a contaminant in surface stream and soil necessitates to develop potential bioremediation methods to degrade and eliminate this pollutant from the environment. A cypermethrin utilizing bacterial strain (MIC, 450  ppm) was isolated from the soil of pesticide contaminated agriculture field and characterized by using polyphasic approach. On molecular basis bacterial isolate showed 98% homology with Bacillus subtilis strain 1D. Under optimized growth conditions, bacteria showed 95% degradation of cypermethrin after 15 days and the end products of cypermethrin biodegradation under aerobic conditions were cyclododecylamine, phenol, 3-(2,2-dichloroethenyl 2,2-dimethyl cyclopropane carboxylate,1-decanol,chloroacetic acid, acetic acid, cyclopentan palmitoleic acid, and decanoic acid. Amplification of esterase (700 bp) and laccase (1200 bp) genes was confirmed by PCR which showed a possible role of these enzymes in biodegradation of cypermethrin. In the presence of cypermethrin Km value(s) of both the enzymes was low than the control. A nobel cypermethrin degradation pathway followed by B. subtilis was proposed on the basis of characterization of biodegraded products of cypermethrin using GC-MS. Cypermethrin biodegradation ability of Bacillus subtilis strain 1D without producing any toxic end product reveals the potential of this organism in cleaning of pesticide contaminated soil and water.
Keyphrases
  • bacillus subtilis
  • risk assessment
  • gene expression
  • genome wide
  • high intensity