Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation.
Wenchen ZhengRuoxiao XieXiaoping LiangQionglin LiangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Biofabrication technologies are of importance for the construction of organ models and functional tissue replacements. Microfluidic manipulation, a promising biofabrication technique with micro-scale resolution, can not only help to realize the fabrication of specific microsized structures but also build biomimetic microenvironments for biofabricated tissues. Therefore, microfluidic manipulation has attracted attention from researchers in the manipulation of particles and cells, biochemical analysis, tissue engineering, disease diagnostics, and drug discovery. Herein, biofabrication based on microfluidic manipulation technology is reviewed. The application of microfluidic manipulation technology in the manufacturing of biomaterials and biostructures with different dimensions and the control of the microenvironment is summarized. Finally, current challenges are discussed and a prospect of microfluidic manipulation technology is given. The authors hope this review can provide an overview of microfluidic manipulation technologies used in biofabrication and thus steer the current efforts in this field.