Login / Signup

Diagnostics of Bolted Joints in Vibrating Screens Based on a Multi-Body Dynamical Model.

Pavlo KrotHamid ShiriPrzemysław DąbekRadosław Zimroz
Published in: Materials (Basel, Switzerland) (2023)
The condition-based maintenance of vibrating screens requires new methods of their elements' diagnostics due to severe disturbances in measured signals from vibrators and falling pieces of material. The bolted joints of the sieving deck, when failed, require a lot of time and workforce for repair. In this research, the authors proposed the model-based diagnostic method based on modal analysis of the 2-DOF system, which accounts for the interaction of the screen body and the upper deck under conditions of bolted joint degradation. It is shown that the second natural mode with an out-of-phase motion of the upper deck against the main screen housing may coincide with the excitation frequency or its higher harmonics, which appear when vibrators' bearings are in bad condition. This interaction speeds up bolt loosening and joint opening by the dynamical loading of higher amplitude. The proposed approach can be used to detune the system from resonance and anti-resonance to reduce maintenance costs and energy consumption. To prevent abrupt failures, such parameters as second natural mode frequency, damping factor, and phase space plot (PSP) distortion measures are proposed as bolt health indicators, and these are verified on the laboratory vibrating screen. Also, the robustness is tested by the impulsive non-Gaussian noise addition to the measurement data. A special diagram was proposed for the bolted joints' strength capacity assessment and maintenance actions planning (tightening, replacement), depending on clearance in the joints.
Keyphrases