Login / Signup

Multivalent-Ion versus Proton Insertion into Nanostructured Electrochromic WO 3 from Mild Aqueous Electrolytes.

Tom RoccaAri GurelDelphine SchamingBenoît LimogesVéronique Balland
Published in: ACS applied materials & interfaces (2024)
Mild aqueous electrolytes containing multivalent metal salts are currently scrutinized for the development of ecosustainable energy-related devices. However, the role of soluble multivalent metal ions in the electrochemical reactivity of transition metal oxides is a matter of debate, especially when they are performed in protic aqueous electrolytes. Here, we have compared, by means of (spectro)electrochemistry, the reversible electrochromic reduction of transparent nanostructured γ-WO 3 thin films in mild aqueous electrolytes of various chemical composition and pH. This study reveals that reversible proton insertion is the only charge storage mechanism over a large pH range and that it is effective for aqueous electrolytes prepared from either organic (such as acetic acid) or inorganic (such as solvated multivalent cations) Bro̷nsted acids. By refuting charge storage mechanisms relying on the reversible insertion of multivalent metal ions, notably in aqueous electrolytes based on Al 3+ ions or a mixture of Al 3+ and Zn 2+ ions, these fundamental results pave the way for the rational development of electrolytes and active materials for a range of aqueous-based devices, such as the emerging concept of an energy-saving smart window, which we also address in this study.
Keyphrases
  • ionic liquid
  • quantum dots
  • transition metal
  • aqueous solution
  • mass spectrometry
  • heavy metals
  • simultaneous determination