Login / Signup

Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of As and Sb.

Lenka MbadughaDuncan CowperSapar DossanovGraeme I Paton
Published in: Environmental geochemistry and health (2020)
Mining activities are acknowledged to introduce contaminants into localised environments and cause wider spread diffuse pollution. The concentration, distribution and fate of arsenic (As) and antimony (Sb) were studied at the former metalliferous Louisa Mine at Glendinning, Scotland. Soils and surface water were sampled and subsequently analysed to map the distribution of contamination and identify pollution sources. The maximum concentrations of As and Sb of 15,490 and 1504.2 mg kg-1, respectively, were determined in soils associated with the ore processing area and spoil heaps. The fractions of dissolved As and Sb in soils were < 1 and < 5% of total soil content, respectively, confirming findings of previous studies that As and Sb are relatively immobile. Yet, the concentrations of As and Sb released by soils exceeded regulatory limits. Concentrations of As and Sb in surface water in the immediate vicinity of the mine were impacted by a gully discharge, but rapidly diluted. While the concentrations affected by the run-off waters did not exceed EU environmental standards for freshwater, the concentrations of both, As and Sb, sharply increased above the said environmental standards approximately 100 m downstream of the mine site. The unaltered As-to-Sb ratio in water samples suggests a geogenic source. While there is a justifiable concern about the soil pollution caused by the historic mining in the area, the Glenshanna Burn is affected more by indigenous geochemical processes than the derelict mine.
Keyphrases
  • heavy metals
  • human health
  • risk assessment
  • health risk
  • health risk assessment
  • drinking water
  • organic matter
  • particulate matter
  • plant growth