Login / Signup

A peak in the critical current for quantum critical superconductors.

Soon-Gil JungSoonbeom SeoSangyun LeeEric D BauerHan-Oh LeeTuson Park
Published in: Nature communications (2018)
Generally, studies of the critical current Ic are necessary if superconductors are to be of practical use, because Ic sets the current limit below which there is a zero-resistance state. Here, we report a peak in the pressure dependence of the zero-field Ic, Ic(0), at a hidden quantum critical point (QCP), where a continuous antiferromagnetic transition temperature is suppressed by pressure toward 0 K in CeRhIn5 and 4.4% Sn-doped CeRhIn5. The Ic(0)s of these Ce-based compounds under pressure exhibit a universal temperature dependence, underlining that the peak in zero-field Ic(P) is determined predominantly by critical fluctuations associated with the hidden QCP. The dc conductivity σdc is a minimum at the QCP, showing anti-correlation with Ic(0). These discoveries demonstrate that a quantum critical point hidden inside the superconducting phase in strongly correlated materials can be exposed by the zero-field Ic, therefore providing a direct link between a QCP and unconventional superconductivity.
Keyphrases
  • molecular dynamics
  • dendritic cells
  • immune response
  • energy transfer
  • monte carlo
  • african american
  • case control