Login / Signup

B-O-O-B Impurity Induces Ultralong Room-Temperature Phosphorescence of Boric Acid.

Yiting SongXiujuan DuanYa-Nan JiangYuchen Ma
Published in: The journal of physical chemistry letters (2024)
Organic materials that can emit ultralong room-temperature phosphorescence (RTP) have attracted a great deal of interest. Whether the pure boric acid (BA) solid can emit RTP and the origin of the RTP in BA caused a debate recently. Herein, our first-principles calculations and experimental measurements suggest that RTP of BA originates from the B-O-O-B group in a (H 2 BO 3 ) 2 species, which can be formed by polymerization of two dehydrogenated BA molecules under light irradiation. The calculated absorption, fluorescence, and phosphorescence spectra of B-O-O-B match well with the experiments. Experimental X-ray photoelectron and X-ray absorption spectra evidence the existence of B-O-O-B in BA. The O-O bond in B-O-O-B can break upon optical excitation, creating two B-O radicals. Radiative transition from localized dangling orbitals of the B-O radicals to the delocalized orbitals of the crystal bulk leads to the observed RTP. Our calculated phosphorescence lifetime is ∼1 s, which agrees well with the experiment.
Keyphrases