Adsorption of 4-Mercapto Pyridine with Gold Nanoparticles Embedded in the Langmuir-Blodgett Film Matrix of Stearic Acid: SERS, XPS Studies Aided by Born-Oppenheimer on the Fly Dynamics, Time-Resolved Wavelet Transform Theory, and DFT.
Somsubhra SahaBipan DuttaManash GhoshJoydeep ChowdhuryPublished in: ACS omega (2022)
This paper reports the adsorptive behavior of the 4-mercaptopyridine (4MPy) molecule soaked in gold nanoparticles (AuNPs) that remain embedded in the bilayer Langmuir-Blodgett (LB) film matrix of stearic acid (SA) for various soaking times (STs). The as-fabricated substrate proved to be an efficient SERS sensing platform that can sense the analyte 4MPy molecules at trace concentrations of ∼1.0 × 10 -9 M. The XPS study not only reveals the adsorption of 4Mpy molecules with AuNPs via a sulfur atom but also suggests partial degradation of the analyte molecule upon adsorption. This observation is further substantiated from the SERS spectral profile, which shows unusual broadening of the enhanced Raman bands of the molecule at higher STs. The experimental observations are supported by Born-Oppenheimer on-the-fly molecular dynamics (BO-OF-MD), time-resolved wavelet transform theory (WT), and the DFT calculations based on adcluster models. Selective enhancements of Raman bands in the SERS spectra further suggest the involvement of charge transfer (CT) interaction to the overall enhancements of Raman bands of the analyte molecule. The molecule → CT contribution has been estimated from electron density difference calculations and the corresponding CT distance; the amount of CT is also envisaged.
Keyphrases
- gold nanoparticles
- molecular dynamics
- density functional theory
- dual energy
- reduced graphene oxide
- image quality
- raman spectroscopy
- computed tomography
- contrast enhanced
- aqueous solution
- label free
- sensitive detection
- positron emission tomography
- magnetic resonance imaging
- room temperature
- molecular dynamics simulations
- gestational age
- low birth weight
- deep learning
- magnetic resonance
- preterm infants
- molecular docking
- convolutional neural network
- monte carlo
- high throughput
- ionic liquid