Login / Signup

Aflatoxin B1 and Sterigmatocystin Binding Potential of Non-Lactobacillus LAB Strains.

Ildikó Bata-VidácsJudit KosztikMária MörtlAndras SzekacsJózsef Kukolya
Published in: Toxins (2020)
Research on the ability of lactic acid bacteria (LAB) to bind aflatoxin B1 (AFB1) has mostly been focusing on lactobacilli and bifidobacteria. In this study, the AFB1 binding capacities of 20 Enterococcus strains belonging to E. casseliflavus, E. faecalis, E. faecium, E. hirae, E. lactis, and E. mundtii, 24 Pediococcus strains belonging to species P. acidilactici, P. lolii, P. pentosaceus, and P. stilesii, one strain of Lactococcus formosensis and L.garviae, and 3 strains of Weissella soli were investigated in MRS broth at 37 °C at 0.2 µg/mL mycotoxin concentration. According to our results, among non-lactobacilli LAB, the genera with the best AFB1 binding abilities were genus Pediococcus, with a maximum binding percentage of 7.6% by P. acidilactici OR83, followed by genus Lactococcus. For AFB1 bio-detoxification purposes, beside lactobacilli, pediococci can also be chosen, but it is important to select a strain with better binding properties than the average value of its genus. Five Pediococcus strains have been selected to compare their sterigmatocystin (ST) binding abilities to AFB1 binding, and a 2-3-fold difference was obtained similar to previous findings for lactobacilli. The best strain was P. acidilactici OR83 with 18% ST binding capacity. This is the first report on ST binding capabilities of non-Lactobacillus LAB strains.
Keyphrases
  • escherichia coli
  • dna binding
  • binding protein
  • transcription factor
  • pseudomonas aeruginosa
  • climate change
  • staphylococcus aureus
  • cystic fibrosis
  • single molecule