Login / Signup

Two-Community Noisy Kuramoto Model Suggests Mechanism for Splitting in the Suprachiasmatic Nucleus.

Jos H T RohlingJanusz M Meylahn
Published in: Journal of biological rhythms (2020)
Recent mathematical results for the noisy Kuramoto model on a 2-community network may explain some phenomena observed in the functioning of the suprachiasmatic nucleus (SCN). Specifically, these findings might explain the types of transitions to a state of the SCN in which 2 components are dissociated in phase, for example, in phase splitting. In contrast to previous studies, which required additional time-delayed coupling or large variation in the coupling strengths and other variations in the 2-community model to exhibit the phase-split state, this model requires only the 2-community structure of the SCN to be present. Our model shows that a change in the communication strengths within and between the communities due to external conditions, which changes the excitation-inhibition (E/I) balance of the SCN, may result in the SCN entering an unstable state. With this altered E/I balance, the SCN would try to find a new stable state, which might in some circumstances be the split state. This shows that the 2-community noisy Kuramoto model can help understand the mechanisms of the SCN and explain differences in behavior based on actual E/I balance.
Keyphrases
  • healthcare
  • mental health
  • magnetic resonance
  • magnetic resonance imaging
  • computed tomography