Login / Signup

Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing.

Ilaria ReaMonica TerraccianoSoundarrajan ChandrasekaranNicolas H VoelckerPrincipia DardanoNicola M MartucciAnnalisa LambertiLuca De Stefano
Published in: Nanoscale research letters (2016)
Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer.
Keyphrases
  • single molecule
  • small molecule
  • high throughput
  • optical coherence tomography
  • living cells