The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods.
Ádám BalogGergely Ferenc SamuSzabolcs PetőCsaba JanákyPublished in: ACS Materials Au (2021)
Titanium dioxide (TiO2) is often employed as a light absorber, electron-transporting material and catalyst in different energy and environmental applications. Heat treatment in a hydrogen atmosphere generates black TiO2 (b-TiO2), allowing better absorption of visible light, which placed this material in the forefront of research. At the same time, hydrogen treatment also introduces trap states, and the question of whether these states are beneficial or harmful is rather controversial and depends strongly on the application. We employed combined surface science and in situ electrochemical methods to scrutinize the effect of these states on the photoelectrochemical (PEC), electrocatalytic (EC), and charge storage properties of b-TiO2. Lower photocurrents were recorded with the increasing number of defect sites, but the EC and charge storage properties improved. We also found that the PEC properties can be enhanced by trap state passivation through Li+ ion intercalation in a two-step process. This passivation can only be achieved by utilizing small size cations in the electrolyte (Li+) but not with bulky ones (Bu4N+). The presented insights will help to resolve some of the controversies in the literature and also provide rational trap state engineering strategies.