Login / Signup

Competing Interactions in Hierarchical Porphyrin Self-Assembly Introduce Robustness in Pathway Complexity.

Mathijs F J MabesooneAlbert J MarkvoortMotonori BannoTomoko YamaguchiFloris HelmichYuki NaitoEiji YashimaAnja R A PalmansE W Meijer
Published in: Journal of the American Chemical Society (2018)
Pathway complexity in supramolecular polymerization has recently sparked interest as a method to generate complex material behavior. The response of these systems relies on the existence of a metastable, kinetically trapped state. In this work, we show that strong switch-like behavior in supramolecular polymers can also be achieved through the introduction of competing aggregation pathways. This behavior is illustrated with the supramolecular polymerization of a porphyrin-based monomer at various concentrations, solvent compositions, and temperatures. It is found that the monomers aggregate via an isodesmic mechanism in weakly coupled J-type aggregates at intermediate solvent quality and temperature, followed by nucleated H-aggregates at lower solvent qualities and temperatures. At further increased thermodynamic driving forces, such as high concentration and low temperature, the H-aggregates can form hierarchical superhelices. Our mathematical models show that, contrary to a single-pathway polymerization, the existence of the isodesmic aggregation pathway buffers the free monomer pool and renders the nucleation of the H-aggregates insensitive to concentration changes in the limit of high concentrations. We also show that, at a given temperature or solvent quality, the thermodynamically stable aggregate morphology can be selected by controlling the remaining free external parameter. As a result, the judicious application of pathway complexity allows us to synthesize a diverse set of materials from only a single monomer. We envision that the engineering of competing pathways can increase the robustness in a wide variety of supramolecular polymer materials and lead to increasingly versatile applications.
Keyphrases
  • energy transfer
  • ionic liquid
  • photodynamic therapy
  • water soluble
  • mass spectrometry
  • high resolution
  • solar cells
  • electron transfer