Forecasting next season's Ixodes ricinus nymphal density: the example of southern Germany 2018.
Katharina BruggerMelanie WalterLidia Chitimia-DoblerGerhard DoblerFranz RubelPublished in: Experimental & applied acarology (2018)
The castor bean tick, Ixodes ricinus (L.) (Ixodida: Ixodidae), is the principal vector of pathogens causing tick-borne encephalitis or Lyme borreliosis in Europe. It is therefore of general interest to make an estimate of the density of I. ricinus for the whole year at the beginning of the tick season. There are two necessary conditions for making a successful prediction: a long homogeneous time series of observed tick density and a clear biological relationship between environmental predictors and tick density. A 9-year time series covering the period 2009-2017 of nymphal I. ricinus flagged at monthly intervals in southern Germany has been used. With the hypothesis that I. ricinus density is triggered by the fructification of the European beech 2 years before, the mean annual temperature of the previous year, and the current mean winter temperature (December-February), a forecast of the annual nymphal tick density has been made. Therefore, a Poisson regression model was generated resulting in an explained variance of 93.4% and an error of [Formula: see text] ticks per [Formula: see text] (annual [Formula: see text] collected ticks/[Formula: see text]). An independent verification of the forecast for the year 2017 resulted in 187 predicted versus 180 observed nymphs per [Formula: see text]. For the year 2018 a relatively high number of 443 questing I. ricinus nymphs per [Formula: see text] is forecasted, i.e., a "good" tick year.