Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma.
Chin-Chou WangWan-Jou ShenGangga AnuragaYu-Hsiu HsiehHoang Dang Khoa TaDo Thi Minh XuanChiu-Fan ShenChih-Yang WangWei-Jan WangPublished in: Journal of personalized medicine (2022)
The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected to cyclophilin structures by tetratricopeptide repeat domains and have peptidyl prolyl isomerase activity that catalyzes proline from residues and turns the trans form into the cis form. Since FKBPs belong to chaperone molecules and promote protein folding, previous studies demonstrated that FKBP family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. In this research, we adopted high-throughput bioinformatics technology to analyze FKBP family genes in LUAD to provide credible information to clinicians and promote the development of novel cancer target drugs in the future. The current data revealed that the messenger (m)RNA levels of FKBP2 , FKBP3 , FKBP4 , FKBP10 , FKBP11 , and FKBP14 were overexpressed in LUAD, and FKBP10 had connections to poor prognoses among LUAD patients in an overall survival (OS) analysis. Based on the above results, we selected FKBP10 to further conduct a comprehensive analysis of the downstream pathway and network. Through a DAVID analysis, we found that FKBP10 was involved in mitochondrial electron transport, NADH to ubiquinone transport, mitochondrial respiratory chain complex I assembly, etc. The MetaCore pathway analysis also indicated that FKBP10 was involved in "Ubiquinone metabolism", "Translation_(L)-selenoaminoacid incorporation in proteins during translation", and "Transcription_Negative regulation of HIF1A function". Collectively, this study revealed that FKBP family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, thus providing new targets for treating LUAD patients.
Keyphrases
- end stage renal disease
- high throughput
- newly diagnosed
- ejection fraction
- chronic kidney disease
- gene expression
- healthcare
- oxidative stress
- squamous cell carcinoma
- peritoneal dialysis
- small molecule
- transcription factor
- prognostic factors
- dna methylation
- high resolution
- palliative care
- social media
- electronic health record
- mass spectrometry
- big data
- heat shock
- molecular dynamics simulations
- heat shock protein
- atomic force microscopy
- high speed
- current status