Synthesis of aglycones, structure-activity relationships, and mode of action of lycosides as inhibitors of the asexual reproduction of Phytophthora.
Fumika KatoYuka AndoAiko TanakaTakamasa SuzukiDaigo TakemotoMakoto OjikaPublished in: Bioscience, biotechnology, and biochemistry (2022)
Phytophthora are plant pathogens that damage agricultural products. Lycosides (1a-d), found in vegetable juice, have the potential to curb the rapid outbreak and crop damage caused by the asexual reproduction of Phytophthora. Here, aglycones 2a, b with slightly higher activity than lycosides were synthesized as a diastereomeric mixture (mix-2) possessing activity (IC50 = 4.1 μM) comparable with that of lycosides. The importance of the cyclohexanone structure and side-chain length was demonstrated via structure-activity relationship analysis using synthetic intermediates. In addition, the action mechanism of lycosides was investigated using transcriptome analysis, which revealed a contribution to proline biosynthesis inhibition, a process crucial for the asexual reproduction of Phytophthora. These findings indicate that lycosides (and aglycone) are environmentally benign agents that can be used for protecting agricultural products from Phytophthora pathogens.