Login / Signup

Biphenyl-Metabolizing Microbial Community and a Functional Operon Revealed in E-Waste-Contaminated Soil.

Longfei JiangChunling LuoDayi ZhangMengke SongYingtao SunGan Zhang
Published in: Environmental science & technology (2018)
Primitive electronic waste (e-waste) recycling activities release massive amounts of persistent organic pollutants (POPs) and heavy metals into surrounding soils, posing a major threat to the ecosystem and human health. Microbes capable of metabolizing POPs play important roles in POPs remediation in soils, but their phylotypes and functions remain unclear. Polychlorinated biphenyls (PCBs), one of the main pollutants in e-waste contaminated soils, have drawn increasing attention due to their high persistence, toxicity, and bioaccumulation. In the present study, we employed the culture-independent method of DNA stable-isotope probing to identify active biphenyl and PCB degraders in e-waste-contaminated soil. A total of 19 rare operational taxonomic units and three dominant bacterial genera ( Ralstonia, Cupriavidus, and uncultured bacterium DA101) were enriched in the 13C heavy DNA fraction, confirming their functions in PCBs metabolism. Additionally, a 13.8 kb bph operon was amplified, containing a bphA gene labeled by 13C that was concentrated in the heavy DNA fraction. The tetranucleotide signature characteristics of the bph operon suggest that it originated from Ralstonia. The bph operon may be shared by horizontal gene transfer because it contains a transposon gene and is found in various bacterial species. This study gives us a deeper understanding of PCB-degrading mechanisms and provides a potential resource for the bioremediation of PCBs-contaminated soils.
Keyphrases