Login / Signup

Curtailing the Overpotential of Li-CO2 Batteries with Shape-Controlled Cu2 O as Cathode: Effect of Illuminating the Cathode.

Anirudha JenaHe Chin HsiehSubashchandrabose ThokaShu-Fen HuHo ChangRu-Shi Liu
Published in: ChemSusChem (2020)
Li-air batteries are limited to lab-scale research owing to the uninterrupted formation of discharge products. In the case of Li-CO2 batteries, the increase in overpotential caused by Li2 CO3 formation results in cell death. In this study, Cu2 O crystals having three different types of shapes (i.e., cubic, octahedral, and rhombic) were synthesized to compare their catalytic activity toward CO2 reactions. The full-cycle and long-term stability test revealed that rhombohedral Cu2 O facilitates Li2 CO3 decomposition more efficiently than that of cubic and octahedral Cu2 O. The cycle was extended to investigate the photocatalytic activity of the rhombic Cu2 O by illuminating the cell. The repeated cycles to 1 h showed a maximum overpotential of 1.5 V, which is 0.5 V lower than that of the cell without illumination. A postmortem analysis of the cell after dividing the cycles into segments demonstrated interesting results concerning the role of light and Cu2 O during the cell cycle.
Keyphrases