The photoinduced manipulation of liquids on a slippery lubricant-infused porous surface (SLIPS) has attracted a tremendous amount of attention because of its merits of contactless stimulation and excellent spatial and temporal control. However, tedious fabrication methods by a combination of template transfer and fluorination for a photothermal-material-doped SLIPS and the lack of deeper systematically quantitative analysis with respect to droplet hydrokinetics are greatly perplexing in both academic research and industrial applications. Here we demonstrate a kind of Fe3O4-doped SLIPS by one-step femtosecond laser cross-scanning, which can readily steer diverse liquids toward arbitrary directions with a fast velocity of up to 1.15 mm/s in the presence of a unilateral NIR stimulus. The underlying mechanism is that the wettability gradient force (Fwet-grad) induced by the temperature gradient arising from asymmetric near-infrared-irradiation (NIR) loading would be generated within 1 s to actuate a targeted droplet's sliding behavior. Through tuning the NIR irradiating sites, we can slide a targeted droplet with controllable directions and routes. On the basis of fundamental physics, we have quantitatively analyzed the relationship among Fe3O4-doped content, lubricant rheological performance, droplet wettability variations, Fwet-grad, and the sliding velocity for diverse liquid species. Accordingly, we can remotely steer liquid droplets to realize the on-off state of an electrical circuit on demand, the droplet fusion of a microfluidic reactor, and the culture/inhibition of biological cells.
Keyphrases
- single cell
- high throughput
- photodynamic therapy
- quantum dots
- drug release
- cancer therapy
- metal organic framework
- highly efficient
- drug delivery
- fluorescence imaging
- visible light
- induced apoptosis
- fluorescent probe
- heavy metals
- ionic liquid
- radiation therapy
- endoplasmic reticulum stress
- risk assessment
- mass spectrometry
- medical students
- tissue engineering
- molecularly imprinted
- electron microscopy
- anaerobic digestion
- capillary electrophoresis