Login / Signup

A novel acid-tolerant β-xylanase from Scytalidium candidum 3C for the synthesis of o-nitrophenyl xylooligosaccharides.

Elena V EneyskayaKirill S BobrovMaria V KashinaAnna S BorisovaAnna A Kulminskaya
Published in: Journal of basic microbiology (2020)
Endo-β-xylanases are hemicellulases involved in the conversion of xylans in plant biomass. Here, we report a novel acidophilic β-xylanase (ScXynA) with high transglycosylation abilities that was isolated from the filamentous fungus Scytalidium candidum 3C. ScXynA was identified as a glycoside hydrolase family 10 (GH10) dimeric protein, with a molecular weight of 38 ± 5 kDa per subunit. The enzyme catalyzed the hydrolysis of different xylans under acidic conditions and was stable in the pH range 2.6-4.5. The kinetic parameters of ScXynA were determined in hydrolysis reactions with p-nitrophenyl-β-d-cellobioside (pNP-β-Cel) and p-nitrophenyl-β-d-xylobioside (pNP-β-Xyl2 ), and kcat /Km was found to be 0.43 ± 0.02 (s·mM)-1 and 57 ± 3 (s·mM)-1 , respectively. In the catalysis of the transglycosylation o-nitrophenyl-β-d-xylobioside (oNP-β-Xyl2 ) acted both as a donor and an acceptor, resulting in the efficient production of o-nitrophenyl xylooligosaccharides, with a degree of polymerization of 3-10 and o-nitrophenyl-β-d-xylotetraose (oNP-β-Xyl4 ) as the major product (18.5% yield). The modeled ScXynA structure showed a favorable position for ligand entry and o-nitrophenyl group accommodation in the relatively open -3 subsite, while the cleavage site was covered with an extended loop. These structural features provide favorable conditions for transglycosylation with oNP-β-Xyl2 . The acidophilic properties and high transglycosylation activity make ScXynA a suitable choice for various biotechnological applications, including the synthesis of valuable xylooligosaccharides.
Keyphrases
  • anaerobic digestion
  • minimally invasive
  • wastewater treatment
  • room temperature
  • binding protein
  • protein protein