Shape resonances, virtual state, and Ramsauer-Townsend minimum in the low-energy electron collisions with benzene.
Alessandra Souza BarbosaMárcio Henrique Franco BettegaPublished in: The Journal of chemical physics (2018)
In this work, we revisit the low-energy electron scattering by benzene. We employed the Schwinger multichannel method implemented with pseudopotentials to carry out systematic cross section calculations with different schemes of polarization for the resonant and the totally symmetric irreducible representations within the D2h symmetry group. We present integral and differential cross sections for incident electron energies up to 12 eV and discuss the shape resonances and the presence of a Ramsauer-Townsend minimum and a virtual state in the former. We also discuss the relation of these physical phenomena with the different schemes of the polarization effects employed in our calculations. Finally, the comparison of our calculated integral and differential cross sections with the available data from the literature suggests improvement in the agreement between theory and experiment.