Login / Signup

Mixed NiO/NiCo2O4 Nanocrystals Grown from the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions.

Chun ChangLei ZhangChan-Wei HsuXui-Fang ChuahShih-Yuan Lu
Published in: ACS applied materials & interfaces (2017)
Mixed NiO/NiCo2O4 nanocrystals grown in situ from the skeleton of a 3D porous nickel network (3DPNN) were prepared with a simple hydrothermal method followed by a low temperature calcination, exhibiting outstanding electrocatalytic efficiencies toward oxygen evolution reactions (OER). The 3DPNN was prepared with a novel leaven dough method and served as both the nickel source for growth of the mixed NiO/NiCo2O4 nanocrystals and the charge transport highway to accelerate the sluggish kinetics of the OER. The mixed NiO/NiCo2O4 nanocrystals exhibited pronounced synergistic effects to achieve a high mass activity of 200 A g-1 at the catalyst mass loading of 0.5 mg cm-2, largely outperforming the corresponding single component nanocrystal systems, NiO (5.87) and NiCo2O4 (9.35). The NiO/NiCo2O4@3DPNN composite electrocatalyst achieved a low overpotential of 264 mV at the current density of 10 mA cm-2 and 389 mV at the practically high current density of 250 mA cm-2, which compete favorably among the top tier of previously reported OER electrocatalysts. Moreover, it exhibited good stability even at the high current density of 250 mA cm-2, showing only 9.40% increase in working applied potential after a continuous 12 h operation. The present work demonstrates a new design for highly efficient OER catalysts with in situ growth of mixed oxide nanocrystals of pronounced synergistic effects.
Keyphrases
  • highly efficient
  • metal organic framework
  • room temperature
  • energy transfer
  • reduced graphene oxide
  • carbon nanotubes
  • oxide nanoparticles