Login / Signup

Synthetic NAD(P)(H) Cycle for ATP Regeneration.

Emma WillettScott Banta
Published in: ACS synthetic biology (2023)
ATP is the energy currency of the cell and new methods for ATP regeneration will benefit a range of emerging biotechnology applications including synthetic cells. We designed and assembled a membraneless ATP-regenerating enzymatic cascade by exploiting the substrate specificities of selected NAD(P)(H)-dependent oxidoreductases combined with substrate-specific kinases. The enzymes in the NAD(P)(H) cycle were selected to avoid cross-reactions, and the cascade was driven by irreversible fuel oxidation. As a proof-of-concept, formate oxidation was chosen as the fueling reaction. ATP regeneration was accomplished via the phosphorylation of NADH to NADPH and the subsequent transfer of the phosphate to ADP by a reversible NAD + kinase. The cascade was able to regenerate ATP at a high rate (up to 0.74 mmol/L/h) for hours, and >90% conversion of ADP to ATP using monophosphate was also demonstrated. The cascade was used to regenerate ATP for use in cell free protein synthesis reactions, and the ATP production rate was further enhanced when powered by the multistep oxidation of methanol. The NAD(P)(H) cycle provides a simple cascade for the in vitro regeneration of ATP without the need for a pH-gradient or costly phosphate donors.
Keyphrases
  • stem cells
  • cell free
  • hydrogen peroxide
  • mesenchymal stem cells
  • cell death
  • oxidative stress
  • single cell
  • endoplasmic reticulum stress
  • carbon dioxide