Login / Signup

Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators.

Rigel Antonio Olvera BernalRoman Olegovich OlekhnovichMayya Valerievna Uspenskaya
Published in: Polymers (2023)
Chitosan/PVA nanofibrous electroresponsive soft actuators were successfully obtained using an electrospinning process, which showed fast speed displacement under an acidic environment. Chitosan/PVA nanofibers were prepared and characterized, and their electroactive response was tested. Chitosan/PVA nanofibers were electrospun from a chitosan/PVA solution at different chitosan contents (2.5, 3, 3.5, and 4 wt.%). Nanofibers samples were characterized using Fourier transform infrared analyses, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), optical microscopy, and tensile test. The electroactive behavior of the nanofiber hydrogels was tested under different HCl pH (2-6) under a constant voltage (10 V). The electroactive response test showed a dependence between the nanofiber's chitosan content and pH with the bending speed displacement, reaching a maximum speed displacement of 1.86 mm -1 in a pH 3 sample with a chitosan content of 4 wt.%. The results of the electroactive response were further supported by the determination of the proportion of free amine groups, though deconvoluting the FTIR spectra in the range of 3000-3700 cm -1 . Deconvolution results showed that the proportion of free amine increased as the chitosan content was higher, being 3.6% and 4.59% for nanofibers with chitosan content of 2.5 and 4 wt.%, respectively.
Keyphrases
  • drug delivery
  • wound healing
  • hyaluronic acid
  • high resolution
  • risk assessment
  • optical coherence tomography
  • climate change
  • mass spectrometry
  • single molecule
  • molecularly imprinted