Login / Signup

Robust Strategy for Antibody-Polymer-Drug Conjugation: Significance of Conjugating Orientation and Linker Charge on Targeting Ability.

Jiaxun WanYongjing LiKe JinJia GuoJiangtao XuChangchun Wang
Published in: ACS applied materials & interfaces (2020)
Antibody-drug conjugates have shown great promise in active targeting for cancer therapy. The existing chemical techniques for antibody conjugation generally lack efficiency or universality. In this article, a site-specific antibody conjugation was developed by using a mild reaction between a benzoboroxole (BB) functionality and cis-diol moiety of sugar units in the antibody fragment crystallizable region under neutral pH conditions. A BB/PEG/ICG-grafted poly(aspartic acid) comb-like functional polymer was first synthesized and conjugated with transferrin (Tf) to form a transferrin-polymer-drug conjugate [Tf-P(BB)], which showed 120% increase in HepG2 hepatoma (Tf receptor overexpression) cell uptake compared to a nontargeting protein-polymer-drug conjugate [HRP-P(BB)]. The universality of this method was further demonstrated by the enhanced uptake of trastuzumab (anti-Her2 antibody)-polymer-drug conjugates in MCF-7 (295%) and MDA-MB-435S (66.4%) (Her2 positive) cells. The positive charge of the linker had great influence on the targeting ability of the antibody-polymer-drug conjugates. The in vivo studies demonstrated the distinct targeting ability of Tf-P(BB) in the HepG2 xenograft tumor, and the tumor accumulation of the Tf-P(BB) testing group increased by 92% with respect to the control group [HRP-P(BB)]. More significantly, the HepG2 cell uptake amount of the antibody-oriented conjugate [Tf-P'(BB)] was 2.4-fold higher than that of the controlled group [Tf-P'(Hex)]. On the basis of this facile site-specific conjugation method, the conjugates are able to change the antibody species easily against various cancers, while maintaining the antibody integrity and targeting ability.
Keyphrases