Login / Signup

Optimization of Temperature Modulation for Gas Classification Based on Bayesian Optimization.

Tatsuya IwataYuki OkuraMaaki SaekiTakefumi Yoshikawa
Published in: Sensors (Basel, Switzerland) (2024)
This study proposes an optimization method for temperature modulation in chemiresistor-type gas sensors based on Bayesian optimization (BO), and its applicability was investigated. As voltage for a sensor heater, our previously proposed waveform was employed, and the parameters determining the voltage range were optimized. Employing the Bouldin-Davies index (DBI) as an objective function (OBJ), BO was utilized to minimize the DBI calculated from a feature matrix built from the collected data followed by pre-processing. The sensor responses were measured using five test gases with five concentrations, amounting to 2500 data points per parameter set. After seven trials with four initial parameter sets (ten parameter sets were tested in total), the DBI was successfully reduced from 2.1 to 1.5. The classification accuracy for the test gases based on the support vector machine tends to increase with decreasing the DBI, indicating that the DBI acts as a good OBJ. Additionally, the accuracy itself increased from 85.4% to 93.2% through optimization. The deviation from the tendency that the accuracy increases with decreasing the DBI for some parameter sets was also discussed. Consequently, it was demonstrated that the proposed optimization method based on BO is promising for temperature modulation.
Keyphrases
  • deep learning
  • machine learning
  • electronic health record
  • big data
  • artificial intelligence
  • high resolution
  • data analysis
  • high speed