Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions.
Bartosz Jan PłachnoMałgorzata KapustaPiotr StolarczykPiotr ŚwiątekPublished in: International journal of molecular sciences (2022)
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill in the gap regarding the structure of the stellate outer trichomes and their immunocytochemistry and to determine whether these data support the suggestions of other authors about the roles of these trichomes. Light and electron microscopy was used to show the trichomes' structure. Fluorescence microscopy was used to locate the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. The endodermal cells and internal head cells of the trichomes were differentiated as transfer cells, and this supports the idea that stellate trichomes transport solutes and are not only tomentose-like trichomes. Trichome cells differ in the composition of their cell walls, e.g., the cell walls of the internal head cells are enriched with arabinogalactan proteins (AGPs). The cell walls of the outer head cells are poor in both low and highly homogalacturonans (HGs), but the immature trichomes are rich in the pectic polysaccharide (1-4)-β-D-galactan. In the immature traps, young stellate trichomes produce mucilage which may protect the trap surface, and in particular, the trap entrance. However, the role of these trichomes is different when the outer head cells collapse. In the internal head cells, a thick secondary wall cell was deposited, which together with the thick cell walls of the outer head cells played the role of a large apoplastic space. This may suggest that mature stellate trichomes might function as hydathodes, but this should be experimentally proven.