Fluorescent Probes for Sugar Detection.
Danielle BruenColm DelaneyDermot DiamondLarisa FloreaPublished in: ACS applied materials & interfaces (2018)
Herein, a new class of polymerizable boronic acid (BA) monomers are presented, which are used to generate soft hydrogels capable of accurate determination of saccharide concentration. By exploiting the interaction of these cationic BAs with an anionic fluorophore, 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (pyranine), a two-component sugar-sensing system was realized. In the presence of such cationic BAs ( o-BA, m-BA, and p-BA), the fluorescence of pyranine becomes quenched because of the formation of a nonfluorescent BA-fluorophore complex. Upon addition of saccharides, formation of a cyclic boronate ester results in dissociation of the nonfluorescent complex and recovery of the pyranine fluorescence. The response of this system was examined in solution with common monosaccharides, such as glucose, fructose, and galactose. Subsequent polymerization of the BA monomers yielded cross-linked hydrogels which showed similar reversible recovery of fluorescence in the presence of glucose.