Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn-Pb Binary Incorporation with a Selective Photonic Deactivation.
Chanho JoSeojun LeeJaehyun KimJae-Sang HeoDong-Won KangSung Kyu ParkPublished in: ACS applied materials & interfaces (2020)
Optoelectronic applications using perovskites have emerged as one of the most promising platforms such as phototransistors, photovoltaics, and photodetectors. However, high-performance and reliable perovskite photonic devices are often hindered by the limited spectral ranges of the perovskite system along with the lack of appropriate processing technologies for the implementation of reliable device architectures. Here, we explore a hybrid phototransistor with a heterojunction of a Sn-Pb binary mixed halide perovskite (CsSn0.6Pb0.4I2.6Br0.4) light absorber and an amorphous-In-Ga-Zn-O (a-IGZO) charge carrying layer. By incorporating Sn-Pb binary components with an all-inorganic base, broadening of light-absorbing spectral ranges with enhanced stability has been achieved, indicating inevitable highly increased conductivity, which triggers a high off-current of the devices. Accordingly, the selectively ultraviolet (UV)-irradiated electrical deactivation (SUED) process is carried out to suppress the high off-current with a reliable device structure. Particularly, it is noted that the selective UV irradiation can facilitate oxidation and distortion of the chemical structure in specific perovskite regions, providing enhanced gate bias modulation of the phototransistor with an increased on/off-current ratio from ∼103 to ∼106. Finally, the SUED-processed phototransistor exhibits an improvement in the photosensitivity by more than 3 orders of magnitude up to 8.0 × 104 and detects in the spectral range from visible to near-infrared (NIR) light (∼860 nm) with good on/off switching behaviors.
Keyphrases
- solar cells
- heavy metals
- room temperature
- aqueous solution
- high speed
- high efficiency
- optical coherence tomography
- ionic liquid
- photodynamic therapy
- risk assessment
- primary care
- healthcare
- magnetic resonance imaging
- high resolution
- radiation therapy
- perovskite solar cells
- nitric oxide
- mass spectrometry
- fluorescence imaging
- radiation induced
- visible light