Login / Signup

Thermo-Responsive Polymer Capsules in Real-Time One-Step RT-PCR for Highly Multiplex RNA Analysis.

Junsun KimSeungwon JungMi Yeon KimBong Kyun KimSoon Hwan KwonSang Kyung Kim
Published in: Advanced healthcare materials (2020)
Rapid and simple detection of RNA targets is in high demand due to the growing threat of pandemic viruses. One-step real-time, reverse transcription-polymerase chain reaction (One-step RT-qPCR) using a controlled release system of thermo-responsive materials is developed in this paper to enable high-fidelity RNA analysis as suppressing by-products. The nanocapsules, consisting of upper critical solution temperature (UCST) material and PCR primers, carry or release the primers depending upon the temperature. The UCST nanocapsules are introduced into hydrogel microparticles incorporated with RT primers and then the target RNA is selectively amplified in the microparticle through one-step RT-qPCR. Severe side products are sharply subdued by separating the PCR primers from the RT process by means of the microparticles with nanocapsules. Because the one-step assay is now implemented in a single microparticle, multiple target RNAs can be analyzed in a simple RT-qPCR of multiple particles. Reliable 18-plex one-step RT-qPCR is successfully conducted within 30 min using single-color fluorescent optics. This work also explains the facile fabrication processes used for the thermo-responsive nanocapsules and hydrogel microparticles by the blending polymerization method. Extensible multiplex analysis of influenza virus demonstrates the versatile uses of this one-step RT-qPCR platform.
Keyphrases
  • real time pcr
  • high throughput
  • drug delivery
  • cancer therapy
  • coronavirus disease
  • transcription factor
  • hyaluronic acid
  • gold nanoparticles
  • highly efficient
  • single molecule