Login / Signup

Liquid Viscosity Sensor Using a Surface Acoustic Wave Device for Medical Applications Including Blood and Plasma.

Kun-Lin LeeGlen KowachFang LiIoana Voiculescu
Published in: Sensors (Basel, Switzerland) (2023)
Blood viscosity is the defining health indicator for hyperviscosity syndrome patients. This paper introduces an alternative approach for the real-time monitoring of blood viscosity by employing a surface-horizontal surface acoustic wave (SH-SAW) device at room temperature. A novel bi-layer waveguide is constructed on top of the SAW device. This device enables the SAW sensing of liquid droplets utilizing a bi-layer waveguide, consisting of a zinc oxide (ZnO) enhancement layer and Parlyene C, that facilitates the promotion of the surface horizontal mode. The ZnO piezoelectric thin-film layer enhanced the local particle displacement and dielectric coupling while the Parylene C layer constrained the wave mode at the interface of the piezoelectric material and polymer material. The device was tested with a liquid drop on the SAW delay-line path. Both experimental and finite element analysis results demonstrated the benefits of the bi-layer waveguide. The simulation results confirmed that the displacement field of local particles increased 9 times from 1.261 nm to 11.353 nm with the Parylene C/ZnO bi-layer waveguide structure. The device demonstrated a sensitivity of 3.57 ± 0.3125 kHz shift per centipoise enabling the potential for high precision blood viscosity monitoring.
Keyphrases
  • room temperature
  • ionic liquid
  • healthcare
  • end stage renal disease
  • chronic kidney disease
  • photodynamic therapy
  • quantum dots
  • high frequency
  • risk assessment
  • finite element analysis
  • peritoneal dialysis
  • social media