Login / Signup

Cross-genus inhibitory activity of polyoxins against aflatoxin production by Aspergillus parasiticus and fumonisin production by Fusarium fujikuroi.

Tomoya YoshinariMaiko WatanabeYukiko Hara-Kudo
Published in: FEMS microbiology letters (2022)
Co-exposure to aflatoxin and fumonisin is a health concern where corn is a staple food, and a method to prevent co-contamination of these mycotoxins in foods is urgently needed. Polyoxins are chitin synthase inhibitors produced by Streptomyces cacaoi var. asoensis. The aflatoxin production inhibitory activity of a commercially available polyoxin D and four polyoxins purified from polyoxin AL water-soluble powder, an agricultural chemical containing polyoxins, was tested. The five polyoxins dose-dependently inhibited aflatoxin production by Aspergillus parasiticus and the IC50 values of polyoxin A, B, D, K and L were 16, 74, 110, 9 and 280 µmol L-1, respectively. Polyoxins also inhibited fumonisin production by Fusarium fujikuroi, and the IC50 values of polyoxin B, D, K and L were 270, 42, 65 and 62 µmol L-1, respectively. Polyoxins repressed the transcription of genes encoding proteins required for aflatoxin biosynthesis in A. parasiticus and fumonisin biosynthesis in F. fujikuroi. Polyoxin K and D also inhibited conidiation in A. parasiticus and F. fujikuroi, respectively. These results suggest that a mixture of polyoxins may effectively prevent co-contamination of aflatoxin and fumonisin in foods.
Keyphrases
  • risk assessment
  • human health
  • water soluble
  • healthcare
  • public health
  • cell wall
  • climate change
  • mental health
  • health risk
  • dna methylation
  • social media