Login / Signup

Recombinant SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Stimulate Release of Different Pro-Inflammatory Mediators via Activation of Distinct Receptors on Human Microglia Cells.

Irene TsilioniTheoharis C Theoharides
Published in: Molecular neurobiology (2023)
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin converting enzyme 2 (ACE2) on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that SARS-CoV-2 infection produces neuroinflammation associated with neurological, neuropsychiatric, and cognitive symptoms persists well past the resolution of the infection, known as post-COVID-19 sequalae or long-COVID. The neuroimmune mechanism(s) involved in long-COVID have not been adequately characterized. In this study, we show that recombinant SARS-CoV-2 full-length S protein stimulates release of pro-inflammatory IL-1b, CXCL8, IL-6, and MMP-9 from cultured human microglia via TLR4 receptor activation. Instead, recombinant receptor-binding domain (RBD) stimulates release of TNF-α, IL-18, and S100B via ACE2 signaling. These results provide evidence that SARS-CoV-2 spike protein contributes to neuroinflammation through different mechanisms that may be involved in CNS pathologies associated with long-COVID.
Keyphrases