Login / Signup

Mycosphaerangium and Neomelanconium (Cenangiaceae) are closest relatives: phylogenetic relationships, morphology and a new species.

Hermann VoglmayrWalter M JaklitschSalvador Tello
Published in: Mycological progress (2020)
Based on molecular phylogenetic analyses of a multigene matrix of partial nuSSU-ITS-LSU rDNA, RPB1, RPB2 and TEF1 sequences and by morphological evidence, the genus Mycosphaerangium is shown to be the closest relative of Neomelanconium, and confirmed to be a member of the Cenangiaceae (Leotiomycetes). While Mycosphaerangium and Neomelanconium share many traits like similar conidia, conidiogenesis, asci and ascospores, their apothecia differ particularly in excipular features and are therefore recognized as distinct genera. Mycosphaerangium tiliae, described from North America, is excluded from the genus but shown to represent the sexual morph of the European Neomelanconium gelatosporum, and it is therefore synonymized with the latter. Based on morphology, Neomelanconium deightonii is assumed to be congeneric with Neomelanconium gelatosporum, and it is lectotypified. Dermatea tetraspora and Phaeangium magnisporum, the basionyms of Mycosphaerangium tetrasporum and M. magnisporum, respectively, are lectotypified as well, and for M. tetrasporum, the asexual morph is recorded for the first time. Mycosphaerangium quercinum sp. nov. is described as a new species from various Quercus hosts in Europe, where it is shown to be widely distributed. It morphologically and ecologically closely resembles the North American M. tetrasporum, but differs in paraphysis and ascospore morphology and by croziers at its ascus base. The three accepted species of Mycosphaerangium and the two of Neomelanconium are described and illustrated. Mycosphaerangium magnisporum, M. quercinum and M. tetrasporum are recorded to be constantly associated with species of Coryneum, indicating a fungicolous habit, but no evidence for fungal associations has been found in Neomelanconium deightonii and N. gelatosporum.
Keyphrases
  • genetic diversity
  • mental health
  • genome wide
  • dna methylation
  • single molecule
  • neural network
  • cell wall