Mechanism of Daunomycin Intercalation into DNA from Enhanced Sampling Simulations.
E E BrossardSteven A CorcelliPublished in: The journal of physical chemistry letters (2024)
Daunomycin is a widely used anticancer drug, yet the mechanism underlying how it binds to DNA remains contested. 469 all-atom trajectories of daunomycin binding to the DNA oligonucleotide d (GCG CAC GTG CGC) were collected using weighted ensemble (WE)-enhanced sampling. Mechanistic insights were revealed through analysis of the ensemble of trajectories. Initially, the binding process involves a ubiquitous hydrogen bond between the DNA backbone and the NH 3 + group on daunomycin. During the binding process, most trajectories exhibited similar structural changes to DNA, including DNA base pair rise, bending, and minor groove width changes. Variability within the ensemble of binding trajectories illuminates differences in the orientation of daunomycin as it initially intercalates; around 10% of trajectories needed minimal rearrangement from intercalation to reaching the fully bound configuration, whereas most needed an additional 1-5 ns to rearrange. The results here emphasize the utility of generating an ensemble of trajectories to discern biomolecular binding mechanisms.